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J.  Phys. A: Math. Gen. 19 (1986) 121-139. Printed in Great Britain 

Liouville field theory: IST and Poisson bracket structure 

G P Jorjadzet, A K Pogrebkov, M C Polivanov and S V Talalov 
Steklov Mathematical Institute, Moscow, USSR 

Received 12 March 1985 

Abstract. The general solution for the Liouville equation with any given number N of 
singularitiv is considered. With the help of the inverse scattering transform method ( IST)  

the set of regular continuous and discrete canonical variables is derived. The dynamical 
generators of Poincart and dilatation groups and N-soliton solutions are constructed in 
terms of these variables. 

1. Introduction 

It is widely known that the straightforward application of the inverse scattering method 
to the Liouville equation 

does not work. Indeed beginning, for example, with the standard Lax pair for the 
sine-Gordon equation we obtain the pair for the Liouville equation as a formal limit 
cp +CO after omitting terms of e-' type. It is easily seen (Pogrebkov and Polivanov 1985) 
that the dependence of this pair on the spectral parameter in fact ceases. Attempts 
were made to overcome this difficulty by introducing some special asymptotic 
behaviour, as in Andreev (1976) and D'Hoker and Jackiw (1982). However, this leads 
to another difficulty (Jackiw 1984): the resulting theory becomes non-translation 
invariant. Another idea was introduced in Gervais and Neveu (1982) where the cone 
coordinates x *  t were considered as spectral parameters in some sense. This gives a 
somewhat restrictive picture which does not allow us to consider the case of singular 
solutions. In a modified form this approach was used by Faddeev and Takhtadjan 
(see Pogrebkov and Polivanov 1985) and proved to lead to complicated constrained 
dynamics in the singular case. 

In our previous investigations of the Liouville equation (1.1) (see Dzordzhadze et 
a1 1979, Pogrebkov and Polivanov 1985) we did not use the inverse scattering method 
but expressed the Liouville solution in terms of two arbitrary functions A,(x,) 

where the cone variables 

x * = x * t  a, = :(ax * a , )  (1.3) 
are introduced. As in our previous works we are interested in N-singular solutions, 
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i.e. the Cauchy data p(x)  = p(0, x)  and ~ ( x )  = p,(O, x)  are correspondingly doubly 
and singly differentiable for any x with the exception of N points xl, . . . , xN. In the 
neighbourhood of any point x, there exist doubly and  singly differentiable functions 
f;(x), gJ(x) and real parameters vJ([uj l  < 1 )  such that 

(1.4) 

with 

f;(x,) = gj(x,) = O .  

p(t, X) = - l o g t [ w ( x - q , ) - p r ] * + ~ ( l x / - ' )  (1 .5)  
x + * m  w = (p2+4)"2 

We require also definite asymptotics 

differentiable in x and t (d ,O( /~ / - ' )=O( lx l -~ )  =d,O(lxl-') and so on).  In fact (1.5) 
fixes real parameters p (one for both ends) and  q* which can be different at different 
ends. In Dzordzhadze et a1 (1979) and Pogrebkov and  Polivanov (1985) requiring the 
preservation of (1.4) and (1 .5 )  in dynamics we proved the existence and uniqueness 
theorem for the global solution of this Cauchy problem. This solution has N lines of 
singularities (corresponding to the zeros of the denominator of (1.2)) vhich are smooth, 
non-intersecting and timelike: 

x=XJ(t )EC3 -1<X,( t )<l  j = 1 ,  . . . , N. 

In the vicinity of any line of singularity there exists a functionJ;(t, x 
able in x and t such that 

(1.6) 

doubly diff erenti- 

(1 .7)  

L(t, xj(t)) 0 

and for the 'particle', i.e. for the point of singularity we have the equation of motion 

All this description is based on the following picture. Introduce two functions 

U*( t, x) = ( y) CP * Q  - (7) % * C p  + 7 e" 
(1.9) 

which are smooth, rapidly decreasing due to (1.4) and (1.5) and  obey conservation laws 

a,u,=o (1.10) 

due to ( 1 . 1 ) .  With the potentials U,(x) = U,(O, x) we construct two pairs of solutions 
of two Schrodinger equations 

-x:,(x) + U*(X)X,,(X) = 0 x*1x:2-x:lx**= 1 ( 1 . 1 1 )  
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obeying the additional condition 

x + , ( x )  = 2(-1)'+' exp(-cp(x)/2)[x',(x)+~(cpf(x) - d x ) ) x - , ( x ) I  i = 1 , 2  (1.12) 

for x, < x < x , + ~ .  Due to (1.9) this condition is consistent with (1.11). In terms of these 
solutions the Liouville functions in (1.2) are given as 

(1.13) 

and the Liouville field as 

2 exp( - cp(t, x)/2) = x + l ( x + ) X - * ( x - )  + x + * ( x + ) x - l ( x - ) .  (1.14) 

Note that the RHS has N zeros for any r which are just the singularities of cp. These 
zeros are of first order and we include the corresponding sign function into the 
exponential symbol in the LHS. 

In addition we require that one of the potentials, say U + ( x )  has a solution of the 
problem (1.11) bounded on the whole axis, i.e. U+ has a quasilevel. Choose x + ,  to 
be this solution. Then by (1.5) and (1.12) 

3 lim ~ - ~ ( x ) = f ( o - p )  lim x + ] ( x )  (1.15) 
x + * x  x + * m  

so the U- potential also has the quasilevel. Then we proved that the number N of 
singularities of cp is given by 

N = N+ + N- + 1 (1.16) 

where N ,  are numbers of zeros of the functions x k l ( x ) .  
In this way we have introduced a generalisation (1.14) of the Liouville solution 

(1.2) which enabled us to describe singular solutions in terms of regular functions x i # .  
However the construction of Poisson bracket structure in this way meets serious 
obstacles. Now we propose a direct way based on the inverse scattering method and 
leading to self-consistent bracket structure for our singular solutions of the Liouville 
equation. The result is: a regular canonical d'Alembert field describing the continuous 
spectrum and a set of 2 N  canonical variables (discrete spectrum of the N-singular 
solution). 

2. IST method for the Liouville equation 

From the above discussion the exceptional role of the potentials U , ( x )  (1.9) is clear 
enough. These potentials are regular even for singular solutions, rapidly decrease at 
infinity and due to the Liouville equation (1.1) obey conservation laws (1.10). Now 
let the potentials U,( f, x )  be ofthe form (1.9) where cp( t, x )  is an arbitrary real function. 
What are the equations for p ( r ,  x )  resulting from conservation laws (1.10)? 

An easy exercise shows that (1.10) is equivalent to the following system 

which gives after integration 
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c p r ( t ,  x)c( t )  = o  (2.26) 

where c ( t )  depends only on t .  
With smooth cp the function ~ ( t )  is continuous. Therefore if there is no interval 

in t such that cp,( t, x )  = 0 identically in x then from (2.26) c( t )  = 0, and ( 2 . 2 ~ )  reduces 
to the Liouville equation. If there exist intervals of stationarity of cp( t ,  x)  then c( t )  is 
an  arbitrary constant and  (2.2a) gives 

-cpxx+2e"=ce" /2 .  

This means that, in general, conservation laws (1.10) are not equivalent to the Liouville 
equation. Consider now our class of solutions described by the asymptotic condition 
(1.5) and singular behaviour (1.4). Let the functions cp( t ,  x )  from (1.9) obey the 
asymptotic condition (1.5). Then in the intervals of stationarity of cp( t, x)  the LHS of 
( 1 . 2 ~ )  tends to zero faster than x - ~  when 1x1 +CO. Meanwhile the RHS with c different 
from zero behaves .as x-'. This contradiction shows that with asymptotic behaviour 
(1.5) c have always to be equal to zero. 

From the other side the character of the singularity (1.4) in the case of singular 
solutions also forbids non-zero c. Indeed, reconsidering once again (2.1) we see that 
c ( t )  in (2.2) remains continuous except for discontinuity jumps at the points, where 
cp(t, x)  becomes singular. Then consider the behaviour of the LHS of ( 2 . 2 ~ )  to the left 
(right) of some singular point, when cp,( t ,  x)  = 0, so that by (2.2b) c may be different 
from zero. Condition (1.4) shows that the LHS is regular when x tends to the point of 
singularity from the left (right), but the RHS behaves as C I X I - ~ S O  that again consistency 
requires c = 0. 

Thus under required asymptotics (1.5) or singular behaviour (1.4) the conservation 
laws (1.10) are equivalent to the Liouville equation. However equations (1.10) are just 
consistency conditions for the following two systems 

-y: + U,y ,  = k 2 y ,  (2.3) 

aTy, = 0. (2.4) 

This consideration provides the most natural Lax pair for the (1.1): 

(2.5) 

and the condition 

L, = [ L ,  MI 

is equivalent to (1.10) and thus to (1.1). 
Thus as in the standard IST scheme the analysis of the non-linear Liouville equation 

is reduced to the linear spectral problem (problems) (2.3). As our  potentials U ,  are 
continuous and  rapidly decreasing we introduce Jost functions 

and transition matrices 
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The functions q (x ,  k ) ,  $(x, k ) ,  a ( k ) ,  b ( k )  (we omit f indices when describing proper- 
ties common for both problems (2.3)) have the standard properties: q(x,  k ) ,  &(x, k ) ,  
a ( k )  are analytic in Im k s O ,  a ( k )  has a number of zeros in Im k > 0 ,  Re k = 0 ,  
c i ( k ) = a ( - k ) ,  6 ( k ) = b ( - k ) ,  I m k = 0 ,  

la(k)12 = 1 + / b ( k ) I 2  (2.8) 

and so on (see for example Zakharov et a1 1980). 
Now we have to write down the solution of the Liouville equation in terms of 

solutions of auxiliary linear problems (2.3). Note that (1.11) shows that we need 
zero-energy solutions of (2.3) bounded at both ends of the x axis. This means that 
the potentials U ,  possess quasilevels. Let us remember (see Calogero and Degasperis 
1982) that in the general case the Jost function for k = 0 tending to one at one end 
linearly increases at the other end which corresponds to the pole behaviour of a ( k )  
and b( k )  at k = 0: 

a,(k)=ic,/k+Z,(k) b,( k )  = -ic,/k + g,( k )  (2.9) 

c, are real constants and 6, 6 are regular functions. Thus in our case we have additional 
conditions 

c * = o  (2.10) 

and a, b are regular. 
As a basis of zero-energy solutions of (1.3) we choose 

(2.11) 

These functions are real, +*(x) are bounded on the whole x axis and i$=(x) linearly 
increase at both infinities, 

lim &,(x) = 1 i$+(x)/x = 1 +o(x-l)  X+,+CO (2.12) 
x-+= 

and 

w[$, i$] = 1. (2.13) 

We can choose ‘+’ functions in (1.14) as 

X + l ( X )  = [ ; ( U  +p) l ”2$+(x )  x + ~ ( x )  = [ ; ( U  -p)]1’2i$+(x) (2.14) 

that automatically agrees with ‘+’ conditions in (1.11). Then ‘-’ functions must be 
determined by (1.12). However equivalently we may determine them by ‘-’ conditions 
in (1.11) and asymptotic behaviour given by (1.12). From (1.15) at +a we have 

X-l(X) = -P)I”*$-(x) (2.15) 

and then 

x-z(x) = [ ; ( U  + p ) ] ” 2 i ~ - ( x )  -constant x +-(XI .  

The constant may be determined by asymptotic conditions ( l S ) ,  (2.12) which gives 

X - ~ ( X )  = [ : (U + p ~ ] ” ~ i $ - ( x )  - [ t ( w  - p ) ] ” ’ o q + ~ - ( x )  



126 G P Jorjadze et a1 

where we introduced a new variable 

q = q++ (2/w) log(40)  - b(O))* w = ( p ’ +  4)”*. (2.17) 

Note that the condition (1.15) was exploited only at +CO. At -m by (2.14), (2.15) it gives 

(2.18) 

Now by (2.6)-(2.8) we see that 

Ia+(O) - b+(O)l= la-(O) - b-(0)1 (2.19) 

(note that a,(O) and b,(O) are real finite). Condition (2.19) is the reason for omitting 
subscripts ‘*’ in (2.16) and (2.17) for a(0 )  and b(0 ) .  

Thus the scheme of solution of the Liouville equation is the following: from Cauchy 
data we construct potentials U,(x) and Jost solutions $*(x, k )  of (2.3) and a , ( k ) ,  
b,(k). Then using the asymptotic condition (1 .5 )  we determine p and q+ and then q 
by (2.17). Substituting all these data into (2.16) we obtain the solution p(t, x) for 
arbitrary t .  

Note that the RHS of (2.16) can become zero which generates singularities for 
q( t ,  x). These are zeros of first order and we remark that the corresponding sign 
function is included in the exponential in the LHS. The number of singularities of cp 
for arbitrary t is given by ( 1 . 1 5 )  where N ,  are now the numbers of zeros of $*(x). In 
the following we describe the Poisson bracket structure of the N-singular solutions in 
terms of scattering data. Note that in (2.16) we need Jost functions only at zero energy, 
but their reconstruction (by means of GLM equations, for example) needs the knowledge 
of scattering data for arbitrary k. Particularly the numbers N,, playing a very important 
role in our analysis, are just the numbers of eigenstates for potentials U , ( x )  (see 
Calogero and Degasperis 1982). Denote by ix, the zeros of a ( k ) :  

a*(ix,,) = 0 x*J>o j = 1,. . . , N ,  (2.20) 

(PAX, k,) = b&x, k,) 

and by b, corresponding coefficients 

(2.21) 

which are real and have a property b, = (-l)N-JlbJl if x1 <. . . < x N  (cf Zakharov et a1 
1980). 

Thus there are 2N,+2N-  discrete variables emerging by IST from potentials U,. 
From (2.16) it is seen that the Liouville solution is not fixed by these potentials only 
but also includes two additional discrete parameters p and q, thus we have precisely 
2 N  (see (1.16)) discrete parameters for the N-singular solution. 

Summarising, we obtain a description of the manifold of singular solutions of the 
Liouville equation in terms of potentials U+(x )  and the pair ( p ,  9). The potentia!s are 
subject to additional restrictions (2.10) and (2.19). 
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We now introduce the d’Alembert field r$( t ,  x )  by means of Backlund transformation 
(see Lamb 1976): 

(2.22) 

Substituting cp (1.16) we see that 4 (  t ,  x )  may be chosen in the form 

exp( - 4 / 2 )  = Icl+(x+)/tL-(x-). (2.23) 

This 4 is the real pseudoscalar free field, rapidly decreasing at both infinities together 
with its derivatives due to (2.10), (2.18). It has N- negative ( 4  + -m) singularities 
and N+ positive ones and again we include the corresponding sign factor in the 
exponential in the LHS of (2.23). This field does not depend on p, q and is completely 
determined by the U,(x) which are expressed in terms of 4 as 

(2.24) 

Thus in fact we study by IST a free but singular d’Alembert field! In the simplest case 
when it is regular (i.e. N+ = N- = 0 or N = 1) all ingredients of (1.16) are expressible 
in terms of 4. Let 

1-2 [ n ( z )  dz)(A!+(x+)AL(x-))-1/2 
J / 

where 

(2.26) may be written in the form 2.16) if we notice that 

+*(x) = (AL(x))-1’2 = exp f ( T +(x)  + jxm dx” II(2)) 

(2.26) 

(2.27) 

( 2 . 2 8 ~ )  

(2.28b) 

( 2 . 2 8 ~ )  

Formulae (2.28u, b )  easily follow from (2 .3)  with k = 0 asymptotics (2.12) and (2.24), 
(2.25). As 1imx+-= +,(x) = a,(O) - b,(O) we see that the conditions 4 -+ 0 when x + -a 
and JTz dz n ( z )  is finite are equivalent to (2.10), (2.19) and obtain ( 2 . 2 8 ~ ) .  Note that 
these explicit formulae work only in the case N =  1. If N+ or N-#O then these 
expressions become meaningless due to divergences. This is why we really need IST 

to resolve the general N-singular situation. 
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3. Poisson brackets for scattering data 

Our aim is to write down a Poisson structure for the Liouville theory such that 

{cp,(t,x), cP(t,y)}=S(x-y) (3.1) 

with other brackets equal to zero. Because of the singularity of cp this problem is 
highly non-trivial. In order to be on the safe side we should write down brackets with 
exponentials exp(-fcp( t, x)). The other problem is that for singular cp the definitions 
of Scp and ST (T  = cp,) become ambiguous. Therefore we start with brackets for 
potentials U ,  which follow after formal use of (3.1) in (1.9): 

{ U*(X)., ~ F ( Y ) }  = 0. (3.26) 

As U ,  are regular even for singular solutions we should postulate them for arbitrary 
N. Note that in fact we have additional conditions (2.10), (2.19) which are a kind of 
constraint and  which are not taken into account up  to now. Consider the case N = 1 
where these constraints follow automatically from the properties of regular free field 
4(f, x). Note that in this case formulae (3.2) follow by (2.24) from canonical brackets 
for d and n: 

{Wx) ,  d(.Y)}= 6(X-Y). (3.3) 

We define Poisson bracket of functionals of cp( t, x)  considering them as functionals 
of d(x) ,  n ( x ) ,  q, p with use of (2.26) and (2.27) as 

aFaG aFdG 
{ F ,  G } = { F ,  G}&+----- 

aP aq aq aP 
where 

Using the explicit formulae (2.27) and (2.28), we have 

( 3 . 4 ~ )  

(3.4b) 

6 
log(a(0) - b(0))2 = i. 

Sn(x) 
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Now straightforward calculation gives 

{exp( - f c p ( t l ,  x,)), exp( - i c p ( t 2 ,  x2))I 

= h [ E ( X + I  - x+2) - & ( - - - I  - x-211 

x { 2  exp[-t(cp(t,, xl)+cp(rz, ~ ~ ) ) I + ( i l l - ( x - ~ ) $ - ( x - 2 )  

- i c~-(x- ) 4- (X-J )(i $+(x+ CL+(X+J - i $+(x+ 1 ) $+(x+2) )I. (3.6) 

This bracket is PoincarC invariant and annulates outside the light cone. Turning to 
equal time brackets we obtain canonical brackets (3.1) for the 1-singular Liouville 
field. Note that care is needed when using (3 .5) .  Indeed if we substitute for F and 
G the functions $,(x) from ( 2 . 2 8 ~ )  we have finite results 

(3.7) 

but if F and/or  G are equal to i$(x), then the brackets are infinite. In  order to avoid 
these infinities in the calculation of (2.6) we have to take the variation of the RHS of 
(2.26) with the substitution of (2.27) and integrate over x in (3.46) only in the last step. 

In our previous work (Dzordzhadze et al 1979, Pogrebkov and Polivanov 1985) 
the modified traceless energy-momentum tensor was introduced. It differs from the 
canonical (Noether) one by some divergence term and is finite in the singular case. 
As the energy-momentum vector we used: 

H ,  = 4 

obtained by integration from the modified tensor. In the same way for the Lorentz 
boost and  dilatation generator we have: 

M ,  = 4 d x  ( U+(X) + U - ( x ) ) x  

It is evident that in this way some constant terms can be lost. These terms are fixed 
by Poisson brackets. If we look for Hamiltonian ( H ) ,  momentum ( P ) ,  Lorentz ( M )  
and dilatation ( D )  generators having correct brackets with Liouville field cp( t ,  x) then 
in the one-singular case ( N  = 1 )  we obtain 

P, = -4 d x (  U + ( X )  - U - ( X ) )  (3.8) 1 

i 

d x (  U , ( x )  + U - ( X ) )  1 

5 D, = -4 d x  ( U+(X) - U - ( X ) ) X .  (3.9) 

H = H , + w  w = (p2+4)1'2 P = P + + p  

M =  M , + w q  
(3.10) 

In this case after substituting (2.24) we have that generators (3.8), (3.9) are just the 
corresponding generators for the free regular field 4(f, x). Thus we have the correct 
field theory for N = 1 and  the next problem is to generalise it to arbitrary N. 

In order to investigate this full problem we turn to IST results because the field 4 
becomes singular. Generalising to the N = 1 case we consider p ,  q as canonical variables 
having zero Poisson brackets with potentials U , ( x )  and all their functionals. In other 
words we preserve two brackets (3.4) and our problem is to define correctly the bracket 
(3 .5) .  In accordance with the above discussion we postulate (3.2). Then using the 
Leibnitz rule from (2.3) for the Jost function $(x, k )  defined by (2.6) we obtain 

-{+"(X, k ) ,  U ( Y ) > +  U(X){+(x,  k ) ,  U(y)I = k2{$(x, k ) ,  C J ( y ) } - { U ( x ) ,  U(y)}$(x, k ) .  

D = D, + p q .  
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Substituting (3.2) and using the Green function of the Sturm-Liouville equation in 
agreement with the asymptotic condition (2.6) we get 

{ $ * ( x ,  k ) ,  U*(Y)I 

Note that the condition (2.6) must be understood in the sense of distributions, in 
particular 

exp(ikx) - 0 exp(ikx)/ k - * i d (  k ) .  (3.11) 
x-.*cc x-i- 

Repeating this procedure we find 

{9*(x,  k ) ,  $*(Y, I ) )  

( 3 . 1 2 ~ )  

(3.12b) 

It seems that we have now all the necessary ingredients to get the Poisson bracket by 
means of (2.16) and (2.11). Note, however, that the RHS of ( 3 . 1 2 ~ )  is the distribution 
of the type ( I  + k - io)-’ thus we cannot put both I = k = 0. If we try to do this we see 
that for example lim,,,,, { $ ( x ,  k ) ,  $ ( y ,  I ) }  depends on the order of limits, limits includ- 
ing ii,h do not exist in agreement with the case N = 1 and from (3.12b) { $ + ( x ) ,  $ - ( y ) )  = 0 
which contradicts (2.7). To avoid all these difficulties we introduce Poisson brackets 
for scattering data. Considering now the limit of (3.12) when x + -CO and using (2.6), 
(2.7) and (3.11) we come to 

* k  
(iU*(k)$*(Y, 1 )  -I+k 1 W($*(Y, U, L ( Y ,  k))cp*(Y, k ) )  

(ib*(k)$*(Y, I ) - =  1 W(CL*(Y, 0 ,  9&, k))cp*(y,  k ) ) .  

{ a * ( k ) ,  $*(Y,  01 = 8i( I - -io) 

{ b * ( k ) ,  $*(Y, 0 )  = 8i ( I+  k -io) 

(3.13) 
Fk 

In an analogous way when y + +cc we get 

{ a * ( k ) ,  a * ( l ) )  = 0 

(3.14) 
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Using definitions of the parameters of discrete spectra (2.20), (2.21) we obtain from 
above 

{%,’ d k ) )  = 

{ x * ~ ,  b+,} = +k&,x+,b,l 

b*(k)) = {G,, %I = 0 

(3.15) 

{b+(k), b*,} = {b+z, b+j} = 0 i , j = l ,  . . . ,  N ,  

and in (3.12)-(3.15) all brackets of the mixed type as (3.12b) equal to zero. 
Note that the initial bracket (3.2) is known as the second in the hierarchy of K d v  

brackets or Magri brackets (Kulish and Reiman 1978, Magri 1978). Therefore (3.14), 
(3.15) are very similar to brackets for Kdv,  in particular our bracket for {a(k),  b(1)) 
equals the respective one for K d v  multiplied by k2 (see Faddeev and Takhtadjan 1985). 
After this multiplication i t  seems that the residue c in (2.9) is an annulator in the 
bracket algebra (3.14). However it is necessary to be more careful. Indeed, by (3.14) 
and (2.9) we have 

k ( i c +  ki(k))(- ic+ lb(1)) 
4 (k+iO)’- 1’ 

{ ic + k i (  k), b( l ) }  = - - 

and note that 

1 1 I +  - -27rS(I) (3.16) -- 2k 
( k +  io)’ - l 2  - k +  / + i o  k - 1 +io k + O  

i.e. is not equal to zero! Thus 

{ C, b ( k)} = - :.irc*S ( k)  . (3.17) 

This means that calculations of brackets including c can be very ambiguous. Details 
will be given elsewhere, here we only list some results: c is an annulator for potentials 
U * ( X )  

{c, U(X)l = o  (3.18) 

and Jost functions 

{c, $(x, k)} = {c, d x ,  k)} = 0 for k # O  (3.19) 

and 

{c, a(k)} = 0 (3.20) 
but 

The zero bracket would be 

{ c, $(x, k) / (  k - io)} = 0. 

This formula gives 
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These brackets are compatible with the equation 

q(x,  k ) =  (ic/k+ci(k))+(x,  k)+(- ic /k+g(k))J(x,  k )  

which follows from (2.7), (2.9), and results from the distribution nature in the momen- 
tum variables of the RHS of (3.12)-(3.14) and limiting prescriptions of (3.11) type. In 
particular the determinant formula (2.18) has to be checked in the form 

k[ la (k ) I2 -  Ib( k)I2-  11 = O  

thus (3.17) and (3.20) do  not lead to contradiction. 
All the above discussion originates from the fact that we have constraints (2.10). 

On the constraints surface all these odd effects disappear. In the following we put 
c,=O, or a ( k )  and b(k) regular. This agrees with Poisson structure. 

Now we turn to condition (2.19) which is another constraint in our theory. We 
see that a(O), b(0) annulate brackets (3.14) and 

(3.21) 

so they are annulators for potentials. However they are not annulators for such 
non-local functionals of U , ( x )  as the field 4(?, x )  which we need. This is demonstrated 
by ( 2 . 2 8 ~ )  for the case N = 1. This results from the fact that to construct 4(r, x )  we 
need brackets involving b(k) /k  which again have to be considered as a distribution: 
l /k=vpk-’ .  These brackets must be rederived from the bracket {$cx, k ) ,  $(x, l ) / l } .  
In general we can expect that the division of (3.12) by I can lead to the appearance 
of an additional S ( l )  term. Taking into account the asymptotic conditions (3.11) 
regularity of a and b we see that there are now additional terms, so instead of (3.14) 

{a (O) ,  U(x))  = {b(O), U(x))  = 0 

(3.22) 

which also do not contain additional terms. This leads to 

{log(a,(O) - b,(O))’, b , (k) /kl= Tf id(k)a , (O)  

so a(O), b(0) do not annulate the bracket with b(k)/k.  How to deal with condition 
(2.19) we will explain later in the appropriate place. 

4. Poisson brackets for N-singular solutions 

In order to make the Poisson structure more explicit we introduce a new field p in the 
following form 

This is real regular d’A1embex-t field with asymptotics 

Note, that under (2.19), i.e. on the constraint surface, p (  t ,  x )  rapidly decreases at space 
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infinity, as this condition with (2.8) is equivalent to 

( - l )N+b+(0)  =(-1)"-b-(O) (-l)"+a+(O) = (-l)N-a-(o).  (4.3) 

{Pl(t, x) ,p( t ,y )}= S(X-Y). (4.4) 

The field p (  t, x )  as follows from (3.22) is canonical: 

Introduce now the variables p,, q, for discrete degrees of freedom: 

p, = {'""+I 

j = 1, * . . , N+ 
j = N+ + 1, . . . , N+ + N- 

(8/pJ) loglb+,l j = l ,  . . . ,  N+, 

1 6 ~ - ( , - ~ + )  
(4.5) 

q ,=(  -(8/P,) loglb-(,-N+)I j = N + + l ,  . . . ,  N++N-.  

Then from (3.15), (3.22) it follows that they have zero brackets with field p ( t ,  x )  and 
are canonical: 

{PI, q,} = 6, i , j = l ,  . . . )  N - 1 .  (4.6) 

Thus beginning with the Magri bracket (3.2) for U, we succeed in diagonalising 
the bracket structure in terms of the variables p(x)  p,(x) describing continuous spectrum 
and p , ,  q1 ( i  = 1, .  . . , N - 1) corresponding to discrete spectrum. To prove self- 
consistency of this description we have now to go all the way back to reconstruct 
Magri brackets and brackets for Liouville fields beginning with (4.4) and (4.6). 

Inverting (4.1) we reconstruct b(k)  and a ( k )  in terms of new variables with the 
help of the standard dispersion relation: 

b,( k) = F( - l ) N -  dz exp(-2ikz(p'(z) * p ( z ) )  I (4.7) 

exp[& 5 dx dY (PYX) f b(x)Yb'(y) * b ( y ) )  cos 2k(x -.Y)l- 1 

Brackets (4.4), (4.6) lead to (2.22) as it is easy to check. Note that we are automatically 
on the constraint surface (2.10) as the condition that a and b are regular at k=O is 
equivalent to integrability of p' ,  b. As to the second constraint (2.19), from (4.7) it 
directly follows that this is the first type of constraint in Dirac terminology, i.e. it 
annulates all brackets in the weak sense. Condition (2.19) is equivalent to the asymptotic 
fall of the field p ( t ,  x). Thus in the following we should always consider rapidly 
decreasing p (  t, x )  which enables us to introduce the definition of brackets in terms of 
standard variation derivatives. Thus we can legitimately introduce the bracket 

As we have said all brackets of the previous section follow from (4.8). Thus all those 
brackets starting with (3.12) are contained in (4.8) by (4.7) and standard GLM argument. 

Let us prove that the singular field C#I is canonical with (4.8). Definition (2.23) tells 
us that we need the zero momentum bracket of Jost functions, but as we have seen 
corresponding limits in (3.12) are i l l  defined. Thus we begin with (3.13). As the RHS 
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is a distribution either in k + 1 or in k .- 1 we can put 1 = 0, which gives 

Evidently (4.9) are singular at the points where Q*(x , )  = 0, i.e. at the singularities of 
q5(r, x ) .  But these singularities do not interfere with the behaviour in k which is of 
interest to us. So by (4.1) we can compute { p ( x ) ,  4 ( t , y ) ) v ,  { P ( x ) ,  d ( t , Y ) ) u ,  and 
turning to the definition of variables of the discrete spectrum in the same way we 
obtain brackets {p,, $ ( r ,  Y ) } ~  {q,, &(r, Y ) } ~ .  Due to (4.8) 

{ d x ) ,  4(r, Y ) ) "  = -W(t, Y ) / S P ; ( X )  

and so on. In this way we obtain all necessary ingredients of (4.8) for {4(r2, x l ) ,  
4( t,, x z ) }  U. They are regular in x and as a result after complicated but trivial computa- 
tions we have 

{#J( t I ,  x l ) ,  4(t2, x 2 ) I u  = i [ ~ ( x ,  - x2  + t ,  - t2 )  - E ( X ,  - x2  - t ,  + t z ) l  (4.10) 

which is the canonical different time bracket for a free field. This bracket is standard 
when q5 is regular. 

The transformation from q5(x) ,  l l ( x )  to p ( x ) ,  , b (x ) ,  p, q, is canonical and in the 
case of regular q5 (see (3.5)) 

I * ,  .Id={., * > U .  (4.11) 

In the presence of singularities the LHS needs to be defined. First of all it is necessary 
to introduce the variations with respect to singular variables. These are defined naturally 
by 

(4.12) 

which we substitute into (3.5). However, as an example (4.9) demonstrates that the 
integrand now becomes singular in the integration variable x .  The singularities are of 
the pole type x - ~  and we overcome this difficulty by the standard prescription for 
distributions: 

f ( x ) - z ::; f I ) (  0 )  XI / i ! 
dx 

If%dx=vP I X n  
(4.13) 

and x-'  = VPX-'. Again omitting direct but tedious computations we prove that under 
this definition 

{b(x), P ( Y ) } d  = S ( X - Y )  P,, 91) = 6, (4.14) 

and so on which proves (4.11) in the general case and gives the precise sense for the 
notion of canonical transformation in the singular case. 
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Now we may describe the phase space for the singular free field. It is given by the 
direct sum of phase space ( p ,  p )  and ( p , ,  q, )  :;I. p and p are smooth rapidly decreasing 
functions, q, are arbitrary real, p, are real non-zero and mutually non-equal. We 
numbered discrete variables in such a way that 

PJ ’ j = l ,  . . . ,  N+ 

Pj < 0 j = N + + l ,  . . . ,  N++N-.  
(4.15) 

From GLM equations it is easy to note that the case where some p , = O  in fact 
corresponds to the absence of respective degrees of freedom. The coincidence of some 
p [ ,  pJ can also be considered by the limiting procedure and leads to the dropping of 
both these degrees of freedom from the phase space. This demonstrates fermionic 
character of ‘particles’ corresponding to singularities (cf Pogrebkov and Polivanov 
1985). 

The brackets obtained are non-degenerate for given N,, N-  because, as we have 
seen, a ( k ) ,  b ( k )  and 5, b, are uniquely determined by p ,  p, p,, q,. Thus the numbers 
N ,  N- have the standard meaning of topological charges. 

Now we turn to the Liouville field (2.16). The bracket for the Liouville theory is 
given by (3.4), where now (3.46) is understood in the sense (4.11)-(4.13). With (4.12) 
we can easily check formulae (3.5) in this case. Using the integration prescription 
(4.13) we again obtain the same bracket as in (3.6).  Thus the cannonical character of 
the Liouville field in the general N-singular case is proven. Remember that we have 
additional variables p ,  q (-m < p ,  q < m) connected with asymptotic behaviour of 
p(t, x )  which have to be added to the phase space which has now N = N++ N-+ 1 
discrete degrees of freedom. 

The last thing we have to do in order to complete the description of Liouville field 
theory is to rewrite the generators of PoincarC care and dilatation symmetries in terms 
of new variables. 

Trace identities (Zakharov et a1 1980) are 

Then (3.8) by (4.5) and (4.7) gives 

(4.16) 

It is easy to check that these generators lead to correct brackets for q5(r, x )  and then 
(3.10) gives the same for the Liouville field p( t ,  x):  

(4.17) 

To construct boost and dilatation generators by (3.9) we need xU,(x) dx. Note that 
differentiating (3.13) by (2.3) we have 

at&, X )  = {H, d t ,  xf) a,Cp(t, X )  = -IP, c p ~ ,  XU. 

(4.18) 
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ib'(k) = - dxcp(x, k)$(x, k)  J ia ' (k)= dx(cp(x, k)&x, k ) - a ( k ) )  J 
by (4.18) we have 

b,(k),4 xU,(x) d x  = +kbL(k). (4.19) { I  I 

(4.20) 

Again with (3.10) we obtain correct brackets for the Liouville field and the correct 
algebra of generators. Note that the Hamiltonian (3.10) with (4.16) is unbounded from 
below which is a known problem for singular ( N  > 1) Liouville field theory. For the 
N = 1 case the mass gap exists which is of help in application to the theory of strings 
(Pogrebkov and Polivanov 1985). 

5. N-solition solutions 

Now when we have a general scheme for the Liouville field theory we can easily write 
down the general N-soliton solutions. For these solutions 

b,( k)  = 0 (5.1) 

i.e. p (  t, x )  = 0, and they correspond to the lowest energy in respective sectors, labelled 
by topological charge N. In this case the Jost function $(x, k) is given (Zakharov et 
a1 1980) by 

N ix.  . ( x )  
$(x, k) = exp(-ikx) (5.2) 

(where the indices * for $, N and y are omitted) and column y = ( y l , .  . . , yN)T  is a 
solution of the system 

N X ) Y  = 2, (5.3) 
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where the matrix A ( x )  is 

From these equations in the usual way we get with k + 0 in ( 5 . 2 )  the potentials 

a2 
ax 

U , ( x )  = -2 7 log det A , ( x ) .  

(5.4) 

( 5 . 5 )  

However, to construct the Liouville solution the expressions at k = 0 are necessary. 
Taking into account ( 5 . 1 )  and ( 5 . 2 )  from ( 2 . 1 6 )  we have 

2 exp(-&P(t, X I )  

( 5 . 6 )  

Let a ( x )  = det A ( x )  and a , ( x )  is the determinant of A ( x )  with substitution of ( 2 , .  . . , 2 ) T  
instead of the j t h  column. Then by (5.3) 

yj = aj/a. 

Introduce b ( x )  = det B ( x )  where 

Now it is easy to see that 
N N 

Equation (5.3) may be written in the form 

or by (5.7) and (5.8) after division of the ith row by x, 

b N -- -5% c 2 x ' L 2 - - .  
x, x , + x ,  x, x,a (5.9) 

Considering this as a system for y l / x ,  we note that in the LHS we have B'. Thus 

where 6 ,  is the determinant of the matrix B with substitution of ( % ; I , .  . . , x&') for the 
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(5.10) 

N -  

- ( w  + P I  E b - , ( x - ) b + ( x + ) .  
j =  1 

Now it is easy to see that the RHS of (5.10) is the determinant of the N x N matrix 

(5.11) 

where 

z, = (5,. . * ,””) x* N, 

and 1 is the column of length N+ (or N-) ,  0 is the zero matrix N- x N+ (or N+ x N-) .  
The Liouville equation can be written in the form 

cp =log 2 a+a-q, 

Substituting in the RHS of (5.10) and (5.11) we have the final answer 

q( t, x )  = log(-2 d+d- log det2 Cl( t, x ) ) .  

6. Concluding remarks 

The canonical structure problem for the Liouville theory was discused in various 
papers. We have already mentioned papers by Andreev (1976) d’Hoker and Jackiw 
(1982), Jackiw (1984) and Gervais and Neveu (1982, 1983, 1984), and noticed the 
difference between these works and our approach. To our knowledge the first three 
works are the only papers in the literature which deal with the field theory, i.e. the 
theory in the infinite volume. In the other works (Gervais and Neveu 1982, 1983, 
1984, Curtright and Thorn 1982, Braaten et a1 1982, 1983, Kihlberg 1983, Johanson et 
a1 1984, Johanson and Marnelius 1984) the theory in a box with some periodicity 
conditions was considered. In the last mentioned papers an attempt was made to 
discuss singular solutions, but in fact only the 1-singular case (our N,=O) was 
investigated. In these papers the IST method was not used and the construction was 
based on the Backlund transformation (2.22) and the Liouville solution in the form 
(1.14). As is now clear this possibility indeed exists only for the 1-singular solution. 
In our paper such a solution is also treated without references to the ET. However 
the general case needs this method. 
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